Data Analysis

Dr. Coleman Cutchins, PharmD, BCPS

Before we start

• I have no conflicts of interest

- I am a well published Clinical Pharmacist but by no means a statistician
- This does not substitute a formal education in statistics or epidemiology

Objectives

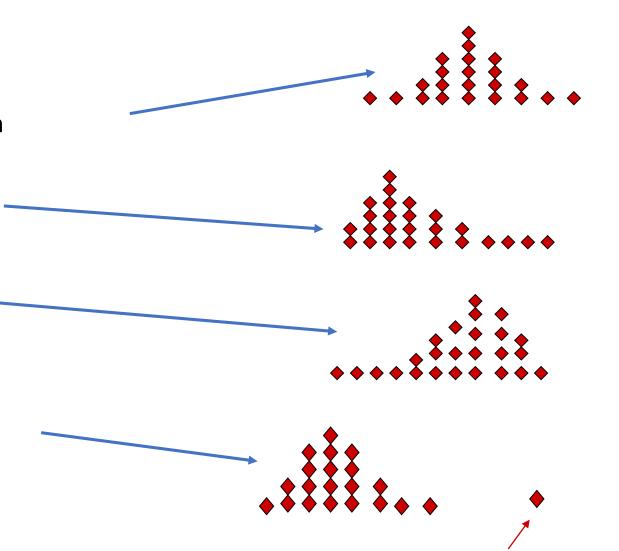
- Understand basic terms of data analysis
- Be able to explain central measures
- Give examples of data collection pertinent to Antimicrobial Stewardship

Statistics

Introduction to Terms

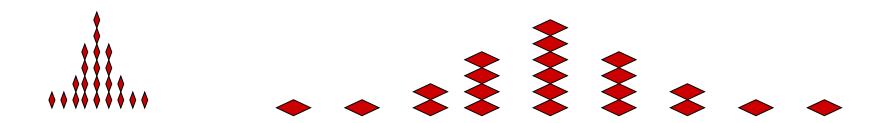
- Population The complete group of interest
- Sample Part of the population (subset)
- Variable a characteristic or property of an item we expect to vary
- Descriptive statics describes what is going on, what is known
- Inferential statics predicts, estimates, infers about data that is not completely known. Needs to include a measure of reliability

Why do we need statistics?


- It's basically mathematical gambling
- Statistics = science of data
- We study information (sample) that is available and manageable to better understand population principles

Data types

- Qualitative variables measure a quality racteristic on each experimental unit
- Quantitative variables measure a numerical quantity on each experimental unit.
 - Discrete if it can assume only a finite or countable number of values.
 - Continuous if it can assume the infinitely many values corresponding to the points on a line interval.
- Normalized data scaled to population


Central tendency

- Mean Average
- Median Middle
- Normal distribution
 - Mean = Median
- Skewed right
 - Mean > Median
- Skewed left
 - Mean < Median
- Outliers
 - Extreme values

Variability

- Range = (Max value) (min value)
- Standard Deviation (SD) Measure of spread (scatter pattern) ≥ 0
 - SD = 0 -> Indicates no variability, data is constant
 - As SD increases the data is scattered more

Measures of Relative Standing

- Percentiles
 - How one value compares with entire set
 - 75th percentile = 75% of the values were lower and 25% higher
- Standardized scores
 - z or t scores
 - Value of 0 = the mean, positive is above negative is below
 - The number vales tell distance from the mean measured in SD

Bell Curve (Normal)

Use a shipletive and interesting out a population with some level of trust/confidence.

Null Hypothesis

- H₀, null hypothesis: conventional belief, status quo, prevailing viewpoint.
- H_a, alternative hypothesis: competing belief, the change we're looking for.
 - For the "sake of argument," we assume the Ho theory is true.

Now how do we judge accuracy?

- α is set at the beginning of the study as the risk willing to take that if you say there is a difference you are wrong
 - Does it have to be 0.05?
 - p value is what is reported in results as the chance that the results are wrong
- β is the chance that if you say there is no difference and the really is
 - Power is $1-\beta$ and related to sample size, larger sample size has a better chance of showing difference if one exists
 - If difference is shown Power for the most part doesn't matter

Are we correct?

- What is the probability that our test will reject a false Ha
- Type I Error:
 - Our sample misleads us to Reject a true Ho This probability = reported p-value
- Type II Error:
 - Our sample leads us to not reject a false Ho. This probability = 1 the reported power

When we Infer

• Estimation:

- Do with some desired level of confidence or assurance
- Confidence interval (CI) and Margin of Error (ME)
 - I'm 95% sure Average ± ME
 - I'm 98% sure percentage ± ME
- Odds Ratio (OR)
 - · Odds of an event
 - If OR crosses 1 there is no difference in groups
 - Example: OR 3.4 (CI: 0.97-5.2)

Other things to consider

- Features of data collection that affect our results:
- Characteristics of the sample and its generalizability
 - Inclusion Criteria & Exclusion Criteria
 - What was included or excluded
 - Statistical significance vs. Clinical significance

Application

Out Patient Antimicrobial Stewardship

- This is a new quality project for centers of Medicare Services (CMS)
- Now What?

Where to start?

- Fluroquinolone (FQ) –Not a "Bad" drug class
 - Commonly used for CAP and UTI
 - Great for drug resistant GNRs
 - Risk factor for FQ resistance is FQ exposure
- Clindamycin More than just a risk of c. diff
 - Commonly used for SSTI
 - More broad spectrum than generally needed (anaerobic coverage)
- Azithromycin (Z-PAK) approaching never for monotherapy coverage for anything
 - Turning into the "Placebo antibiotic"

Initial Measures

- Using the Medicare Data we can match the Part A and B encounter to the Part D Prescription fill for patients seen In the ER and not admitted we will calculate: % of antibiotic (ABX) prescriptions that are fluroquinolone (FQ) – FQ/total_ABX
 - %ABX for UTI that are FQ FQ/total_ABX_UTI
 - %ABX for community acquired pneumonia that are FQ FQ/total_ABX_CAP
 - Any ABX prescribed for URI_acute broncitis ABX/URI_Dx
 - % antibacterial (so not including Tamiflu) prescribed for influenza (without pneumonia dx) – ABX/Influenza
 - %ABX for SSTI that is Clindamycin Clinda/ total_ABX_ SSTI
 - %Clindamycin for Pharyngitis Clinda/ total_ABX_ Pharyngitis
 - %ABX prescriptions that are Azithomycin Azithro/Total_ABX

Summary and further questions

- Very complex problem
- It effects all walks of life
- Why does the USA have the 8th highest drug addiction rate in the world?

Objectives

- Understand basic terms of data analysis
- Be able to explain central measures
- Give examples of data collection pertinent to Antimicrobial Stewardship

THANK YOU! Questions and Comments

References